skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Negri, Matteo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations. 
    more » « less